BIOLOGICAL ACTIONS AND TRANSLATIONAL POTENTIAL OF HYDROGEN SULFIDE

Andreas Papapetropoulos

Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens.

Over the last decade, hydrogen sulfide (H₂S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H₂S is produced by the body by enzymatic reactions and regulates a host of physiological and pathophysiological processes in various cells and tissues. H₂S production and H₂S tissue levels are decreased in a number of conditions (e.g. diabetes mellitus and aging) and are increased in other states (e.g. various forms of inflammation and critical illness). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H₂S, either based on H₂S donation or inhibition of H₂S biosynthesis. H₂S donation can be achieved through the inhalation of H₂S gas, and/or the parenteral or enteral administration of various formulations of fast-releasing H₂S donors (salts of H₂S such as NaHS and Na₂S), or slow-releasing H₂S donors (GYY4137 being the prototypical compound). On the side of pharmacological inhibition of H₂S synthesis, there are small molecule compounds targeting each of the three H₂S-producing enzymes CBS, CSE and 3-MST. During the presentation, examples of the biological activities, along with translational efforts using H₂S donors and H₂S biosynthesis inhibitors in cardiovascular disease and cancer will be highlighted.