

Roche

Al in Pharmacovigilance

Empowerment through Automation

Sriram Venkateswaran, Senior Safety Data Scientist

26.05.2023 | Confidential

Table of contents

- 1. Introduction to AI & Automation
- 2. Large Language Models
- 3. Automation & Al in PV
- 4. Locally Optimal Solutions
- 5. Challenges
- 6. Learning from Experience

Introduction to AI & Automation

Roche

4

What is AI?

What is AI: AI & Natural Language Processing

Al vs Automation

6

A brief introduction to Machine Learning

What are they? How are they trained?

Large Language models are neural networks trained on large quantities of unlabeled text. LLMs are general purpose models which excel at a wide range of tasks, as opposed to being trained for one specific task (such as sentiment analysis, named entity recognition, or mathematical reasoning)

What are they? How are they trained?

GPT Assistant training pipeline Pretraining Supervised Finetuning **Reward Modeling Reinforcement Learning** Stage Raw internet Demonstrations Comparisons Prompts 100K –1M comparisons ~10K-100K prompts text trillions of words Ideal Assistant responses, low-quality, large quantity ~10-100K (prompt, response) written by contractors written by contractors Dataset written by contractors low quantity, high quality low quantity, high quality low quantity, high quality (\mathbf{v}) \mathbf{V} (\mathbf{v}) (\mathbf{v}) Language modeling **Binary classification Reinforcement Learning** Language modeling predict the next token predict rewards consistent w Algorithm predict the next token generate tokens that maximize preferences the reward init from init from init from SFT use RM 7 7 7 (\mathbf{v}) (\mathbf{v}) (\mathbf{v}) Model **Base model** SFT model RM model **RL model** 1000s of GPUs 1-100 GPUs 1-100 GPUs 1-100 GPUs months of training days of training days of training days of training Notes ex: GPT, LLaMA, PaLM ex: Vicuna-13B ex: ChatGPT, Claude can deploy this model can deploy this model can deploy this model

Text Corpus: Wiki articles, internet data, open books corpus etc Large Language Model: BERT, GPT, LLAMA etc

Fine Tuned Task Specific Model

GPT3 & the new generation of large language models

Text Corpus: Wiki articles, internet data, open books corpus etc Large Language Model: GPT3, LLAMA

The end of work as we know it

Automation & AI across the PV Value Stream

Roch

	Intake	Case Management	Submissions & Periodics	Signal Management	Safety Surveillance
Al & Machine Learning	 ML based AE Detection Machine translation NLP based case extraction Speech to text AE detection 	 Touchless case processing Al Based causality Al based MedDRA and product coding 	 NLG based Periodics report generation 	 Neural signal detection (Predictive signalling) Deep learning to identify safety signals 	 AI based literature article classification Social media screening
Engineered Algorithms	 Fuzzy & deterministic Duplicate search Process mining 	 AEs for Special situations Process mining 	 Smart Periodics schedules 	 Reduce False positives and Signal leaks with enhanced detection algorithms 	
Smart Automation	 ICR Bot assisted Follow-ups Bot assisted CTV Bot assisted Contact test 	 Case processing rules engine 	 Rules based submission Reconciliation Smart Periodics schedules 	 Smart signal tracking & alerts 	 Automated literature searches

The Common Minimum Problem in PV

Locally Optimal Solutions: AE Filter & Experiments with ChatGPT

AE Filter Performance

Confusion matrix

True Positive Rate = 96.42% False Positivity rate = 42.7%

Lots of time and resources spent on curating dataset, training, testing & validating individual models.

GPT3.5 on Open Source AE Data: Experiment 1

Link to Open Source Data

Confusion matrix

Average Efficiency Gain: 42.5%
Number of Hours Saved: 141.3
Estimated Cost: \$0.8
Prompt:
You are an AI assistant that helps people
classify medical. Please respond with only
one word, yes or no. Does the following
statement contain an identifiable
pharmaceutical drug and an adverse event.

GPT3.5 on Open Source AE Data: Experiment 2

<u>Link to Open Source Data</u>

Confusion matrix

Average Efficiency Gain: 64.91% Number of Hours Saved: 81.4 Estimated Cost: \$0.4

Prompt:

You are an AI assistant that helps people classify medical. Please respond with only one word, yes or no. does the following statement contain an identifiable pharmaceutical drug **and an adverse event caused by** the pharmaceutical drug:

Locally Optimal Solutions

Using Foundational Models Appropriately

Roche

Challenges

Lessons Learned

Learning From Experience Complexity in PV Processes is not a bug. It is a Feature

Learning From Experience Prefer Locally Optimal Solutions

Learning from Experience Empower process owners and Data Scientists

Doing now what patients need next